Сопротивление теплопередаче – важная характеристика окна

Количество переносимого тепла Q называется тепловым потоком; эту величину обычно относят к единице времени — часу. Тепловой поток, отнесенный к единице поверхности, называется удельным тепловым потоком, плотностью теплового потока, или тепловой нагрузкой поверхности нагрева q.

Подробный обзор

Понятие коэффициента теплопроводности

Эта величина определяет количество тепла, проходимое через единицу объема образца при разнице температур в 1 градус Цельсия. Единица измерения – Вт/(м*C). Чем больше эта характеристика, тем выше способность материала передавать тепло и тем хуже он выполняет функции теплоизолятора.

Бетон имеет неоднородную структуру. Теплопередача определяется компонентами, входящими в состав строительного материала. Наименьшую теплопроводность имеет воздух, который находится в микропорах заполнителей и капиллярах цементного камня. Поэтому чем выше его содержание, тем лучше теплоизоляционные свойства бетонного элемента.

Плотность клинкерного кирпича

Блоки клинкерные производят из сухой глины красного оттенка. После закаливания при высоких температурных режимах состав приобретает устойчивую плотность — от 1900 до 2100 кг/см3. Износостойкость обусловлена и низкой пористостью — всего 5%, которая достигается спеканием минерального состава, снижающим объемы щелей в кирпичах, уменьшающим вероятность попадания влаги в сырье.

Марки блоков отличаются оттенками и фактурами, которые производятся посредством подбора специальных составов глин, изменения температурных режимов и времени при обжиге. Но показатели уплотненности состава сохраняются на среднем для подвида уровне.

Недостатки — высокие цена и теплопроводность. Поэтому при укладке потребуются затраты на теплоизоляционные работы.

Плотность шамотного кирпича

Уплотненность шамотных кирпичей средняя и варьируется в пределах от 1700 до 1900 кг/см3. Высокая износостойкость достигается за счет небольшой пористости, которая составляет не больше 8%. Материал прочный и не деформируется под воздействием высоких температур, максимальный показатель — +1600°С.

На 70% материал состоит из глины огнеупорной, которая отличается большим весом. При проектировании необходимо учитывать массу строительного материала, чтобы избежать увеличения нагрузки на несущие части здания.

Разновидности шамотного кирпича (арочные, классические, трапециевидные либо клиновидные) имеют похожие показатели плотности. Блоки применяют для укладки печей и каминов, производственных сооружений, промышленных сталеплавильных установок и т.д. Технология изготовления, состав и показатели износостойкости обусловили высокую цену стройматериала.

Чем привлекательна низкая теплопроводность клееного бруса

Как известно, чем ниже значение теплопроводности*, тем лучше материал удерживает тепло.

Теплопроводность клееного бруса – важнейшая его характеристика. Коэффициент теплопроводности у клееного бруса самый низкий и составляет 0,1 Вт/м*С.

Чтобы было более понятно, сравним теплопроводность других материалов:

  • Железобетон имеет коэффициент теплопроводности 2,04 Вт/,
  • Пенобетон обладает теплопроводностью в размере 0,47 Вт/,
  • Пустотелый кирпич — 0,52 Вт/,
  • Профилированный брус обладает теплопроводностью 0,18 Вт/,
  • Клееный брус – 0,1 Вт/

Такой низкий показатель теплопроводности у клееного бруса достигается за счет наличия нескольких факторов:

  1. Основа клееного бруса — древесина, которая сама по себе имеет низкую теплопроводность.
  2. При производстве клееного бруса используется клей, который в свою очередь является прекрасным теплоизолятором. Нашей компанией используется немецкий клей Akzo Nobel, который предназначен для склеивания древесины с древесиной. Он дает клеевые швы с очень высокими показателями прочности в различных условиях окружающей среды. Соединение обладает высокими показателями теплостойкости, стойкостью к действию растворителей и сопротивления ползучести при воздействии нагрузок.

На основании вышесказанного:

  1. Дома, построенные из клееного бруса, очень комфортные и практичные:
  • В зимний период на прогрев всего дома вы потратите минимально короткое время, а сохраните тепло на очень длительный период. Тем самым получите значительную экономию на отопление.
  • В летний период постоянной необходимости в кондиционировании дома не будет, т.к. прохлада в доме будет сохраняться довольно долго, в отличие от домов, построенных из других материалов. А это также экономия на содержании дома.
Читайте также:  Как самому сделать паровое отопление в частном доме?

2. Стены дома можно делать значительно меньшей толщины, чем из других материалов. К примеру, теплопроводность бруса 150х150мм приблизительно такая же, как и бревна, имеющего диаметр в 240мм.

3. Нет необходимости в дополнительном утеплении стен.

  • Брус сечением 200 мм способен обеспечить комфортные условия даже в зимние морозы без дополнительного утепления.

Таким образом, клееный брус, благодаря низкой теплопроводности, является идеальным строительным материалом для возведения комфортного жилья, а также дает возможность дополнительной экономии на материале.

*Справка: Теплопроводностью называется количественная характеристика способности тела проводить тепло.

Теплопроводность цветных металлов, теплоемкость и плотность сплавов

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град). Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС. Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки (при 18ºС)

В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.

Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.

Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).

Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС. Размерность теплоемкости кал/(г·град).

Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре. Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000! Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.

Источники:

Сравнительная характеристика теплоемкости основных строительных материалов

Для того, чтобы сравнить теплоемкость наиболее популярных строительных материалов, таких дерево, кирпич и бетон, необходимо рассчитать величину теплоемкости для каждого из них.

В первую очередь нужно определиться с удельной массой дерева, кирпича и бетона. Известно, что 1 м3 дерева весит 500 кг, кирпича – 1700 кг, а бетона – 2300 кг. Если мы берем стенку, толщина которой составляет 35 см, то путем нехитрых расчетов получим, что удельная масса 1 кв.м дерева составит 175 кг, кирпича – 595 кг, а бетона – 805 кг. Далее выберем значение температуры, при которой будет происходить накопление тепловой энергии в стенах. Например, это будет происходить в жаркий летний день с температурой воздуха 270С. Для выбранных условий рассчитываем теплоемкость выбранных материалов:

Сравнительная характеристика теплоемкости основных строительных материалов
  1.  Стена из дерева: С=СудхmудхΔТ; Сдер=2,3х175х27=10867,5 (кДж);
  2.  Стена из бетона: С=СудхmудхΔТ; Сбет=0,84х805х27= 18257,4 (кДж);
  3.  Стена из кирпича: С=СудхmудхΔТ; Скирп=0,88х595х27= 14137,2 (кДж).
Читайте также:  Как сварить регистры отопления своими руками

Из произведенных расчетов видно, что при одинаковой толщине стены наибольшим показателем теплоемкости обладает бетон, а наименьшим – дерево. О чем это говорит? Это говорит о том, что в жаркий летний день максимальное количество тепла будет накапливаться в доме, выполненном из бетона, а наименьшее – из дерева.

Этим объясняет тот факт, что в деревянном доме в жаркую погоду прохладно, а в холодную погоду тепло. Кирпич и бетон легко накапливают в себе достаточно большое количество тепла из окружающей среды, но так же легко и расстаются с ним.

Сравнительная характеристика теплоемкости основных строительных материалов

Теплопередача стеклопакета

  1. Закачка во внутренние камеры инертного газа – этот метод помогает снизить конвекцию.
  2. Нанесение на внутреннюю сторону одного из стекол специального металлизированного слоя, который пропускает свет и отражает инфракрасные окна.
  3. Оснащение стеклопакетов невидимыми нагревательными элементами, выполняющими функцию тепловой завесы.

Селективные энергосберегающие стеклопакеты

Коэффициент сопротивления теплопередачи стеклопакетов

Ro=1/k, где k – коэффициент теплопроводности, которым пользуются в странах со стандартами DIN.

Расчет коэффициента теплопроводности

  • дистанционная рамка;
  • воздух или инертный газ;
  • селективный слой;
  • стекло.

Ro=S×T/W, где

Сопротивление теплопередачи оконного стеклопакета (таблица)

Тип стеклопакета

Толщина модели (мм) / Кол-во камер Ширина внутренней камеры (мм) Коэффициент сопротивления теплоперадаче Ro (м²×°C/Вт) Звук. (дБ)
4 – 8 – 4 16 / 1 8 0,32 30
4 – 12 – 4 20 / 1 12 0,34 30
4 – 20 – 4 28 / 1 20 0,35 32
4 – 10 – 4 – 10 – 4 32 / 2 10/10 0,46 36
4 – 14 – 4 – 14 — 4 40 / 2 14/14 0,5 37
4 – 18 – 4 – 18 – 4 48 / 2 18/18 0,53 38
4 – 12 – 4k 20 / 1 12 0,5 32
4 – 12a – 4k 20 / 1 12 0,55 32
4k – 12 – 4k 20 / 1 12 0,53 32
4k – 12a – 4k 20 / 1 12 0,59 32
4 – 10 – 4 – 10 – 4k 32 / 2 10/10 0,64 36
4 – 10a – 4 – 10a – 4k 32 / 2 10/10 0,77 38
4 – 10 – 4k – 10 – 4k 32 / 2 10/10 0,8 36
4 – 10a – 4k – 10a – 4k 32 / 2 10/10 0,95 38

В процессе выбора не рекомендуется ориентироваться только на коэффициент теплопередачи стеклопакетов — таблица содержит сведения о звукоизоляции, которую тоже нужно учитывать. Особенно это актуально при заказе пластиковых окон для эксплуатации в шумных районах.

  • 5 или 6-камерным профилям класса «A» с системной глубиной от 70 мм (приветствуется увеличение числа внутренних камер и количества контуров уплотнения);
  • селективным стеклопакетам с толщиной от 32 мм.

При выборе стеклопакета важно учитывать площадь световых проемов. Ведь с увеличением этого параметра растут теплопотери. Значит, в таком случае потребуются максимально эффективные стеклопакеты. У маленьких окон, наоборот, площадь профильной конструкции сопоставима с площадью остекления, поэтому можно выбрать модель с меньшей энергоэффективностью.

Теплопроводность арболита

Арболит — это строительный материал, который относится к группе легких бетонов. Состоит арболит из органического заполнителя — древесной щепы и минеральных связующих, которым является цемент и отвердитель.

В роле отвердителя выступают экологически чистые химические добавки, используемые и для очистки воды.

Этот стройматериал по своим характеристикам близок к дереву, так как в зависимости от своей марки он может на 90% состоять из древесной щепы.

Основными характеристиками являются теплопроводность арболита, его хорошая звукоизоляция и воздухообмен.

Теплопроводностью является способность материала пропускать тепловой поток, который появляется в результате разности температурных показателей на обратных поверхностях. У каждого материала разная теплопроводность, у одних она проходит быстрее, у других медленнее.

К быстро проводимым относятся металлы, а к медленно проводимым — все виды теплоизоляционных спецматериалов.

Теплопроводность материала зависит от его средней плотности (чем плотнее материал, тем выше его теплопроводность), пористости, структуры, среднего температурного показателя между слоями и влажности. Чем больше показатель пористости материала, тем меньше его теплопроводность.

Совет

С увеличением влажности материала повышается его теплопроводность, и понижаются теплоизоляционные показатели. Именно поэтому на теплоизоляционные материалы наносят покровный слой, защищающий его от влаги.

Теплопроводность арболита зависящая от его класса и вида колеблется от 0,08 до 0,17 Вт/ь*К.

Теплоемкость арболита

Теплоемкостью является способность материала во время нагревания впитывать теплоту. Удельная теплоемкость является показателем теплоемкости. Органические вещества относятся к накопителям и изоляторам, а неорганические — проводникам тепла.

Теплопроводность арболита

На заметку: Если вы решили заказать сруб бани под ключ, то в таком случае мы рекомендуем вам обратиться по данному вопросу в компанию

Арболит относится к накопительным и изолирующим материалам, так как почти на 90% состоит из органического древесного наполнителя.

Строительство из арболита

Арболит относится к группе относительно новых строительных материалов, которые использовались для возведения зданий и завоевали популярность среди потребителей.

Блоки из арболита используют для строительства промышленных объектов, а также общественных и жилых зданий.

Что касается строительства жилых помещений, то арболитовые блоки в основном применяются при построении зданий коттеджного и малоэтажного типа. Для строительства многоэтажных возведений его практически не используют.

Особенности арболита:

  • – Арболитовые блоки достаточно часто используют как строительно-отделочный материал под видом стандартных панелей. К положительным свойствам деревобетона относятся тепло- и гидроизоляция, звукоизоляция, а также хорошая поглощаемость влаги.
  • – Строительство зданий из данного стройматериала производится по тому же принципу, что и с фиброцементных и цементных плит. Но по сравнению с другими разновидностями бетона, изготовленные из арболита блоки не трескаются при повышении механических нагрузок.

Они обладают способностью во время высоких нагрузок сжиматься и через некоторое время возвращаться в прежнюю форму. Именно из-за этого свойства арболит используют для строительства зданий на проседающих грунтах.

  • – Деревобетон хорошо распиливается, сверлится, в нем достаточно прочно закрепляются гвозди и шурупы. На стены, построенные из деревобетона, отлично наносятся штукатурные растворы, клеи, краски и такие стройматериалы, как обшивка из пластика и дерева, керамическая плитка, обои, и т. д.
  • – Если говорить об удобстве в обработке, то арболитовые блоки не уступают пенобетону и газосиликатному бетону.
  • – Благодаря своему древесному наполнителю арболит близок к древесине и способен приводить в норму показатель влажности воздуха в жилых и общественных возведениях.
  • – Арболит практически не горит и является жаробезопасным материалом. Он не поддается процессу гниения, образованию плесени и грибка.
  • – Также к особенностям данного строительного материала относится его легкость. Этот факт облегчает его транспортировку и возведение арболитовых конструкций и зданий.

Видео: Характеристики арболита

Конструкционно-теплоизоляционные и конструкционные материалы

Из этой группы в строительстве чаще всего используются пенобетон, шлакопемзобетон, шлакобетон. Некоторые типы керамзитобетона плотностью свыше 0,29 Вт/(м°С) также могут быть отнесены к этой разновидности. Конструкционные бетоны: теплопроводность

Материал Пенобетон Шлакопемзобетон Шлакобетон
Коэффициент теплопроводности 0,3 Вт/(м°С) До 0,63 Вт/(м°С) 0,6 Вт/(м°С)

Очень часто такой бетон с низкой теплопроводностью используется непосредственно в качестве строительного материала. Но иногда его применяют и как изолятор, не пропускающий холода.

Кирпич как изолятор

Далее для сравнения рассмотрим характеристики в отношении теплопроводности и этого популярного строительного материала. По прочностным качествам кирпич не только не уступает бетону, но зачастую и превосходит его. То же самое касается и плотности этого строительного камня. Весь используемый сегодня при возведении зданий и сооружений кирпич классифицируется на керамический и силикатный.

Обе этих разновидности камня в свою очередь могут быть:

  • полнотелыми;
  • с пустотами;
  • щелевыми.

Конечно же, полнотелые кирпичи задерживают тепло хуже пустотных и щелевых. Теплопроводность кирпича

Кирпич Полнотелый силикатный/керамический Силикатный/керамический с пустотами Щелевой силикатный/керамический
Коэффициент теплопроводности Вт/(м°С) 0,7-0,8/0,5-0,8 0,66 /0,57 0,4/0,34-0,43

Теплопроводность бетона и кирпича, таким образом, практически одинакова. Как силикатный, так и керамический камень изолируют помещения от холода довольно-таки слабо. Поэтому дома, возведенные из такого материала, следует дополнительно утеплять. В качестве изоляторов при обшивке кирпичных стен так же, как и залитых из обычного тяжелого бетона, чаще всего применяются пенополистирол или минеральная вата. Можно использовать для этой цели и пористые блоки.

Теплопроводность железобетона и тепловое сопротивление

Начиная строительство помещения, следует ознакомиться с такими характеристиками:

  1. Коэффициент проводимости тепла. Он указывает на объемы тепла, которое проходит через блок в течение заданного интервала. Если значение снижается, это уменьшает способность пропускать тепловую энергию. При повышении значений ситуация выглядит противоположным образом.
  2. Сопротивление конструкций к потере тепла. Показатель указывает на способность материала сохранять тепло внутри постройки. Если он высокий, бетон подходит для теплоизоляции, если низкий — для быстрого отвода тепла наружу.

При составлении проекта здания и проведении тепловых расчетов важно уделять таким значениям особое внимание.